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1> correction time, prior to implementation of the optimum policy, is negligible;
the other incorporating the cost of observations.

Work was also completed on an Imperfect Software Deougging Model that assumes
errors are not corrected with certainty. By assuming the initial number of
errors, probability of successfully correcting an error, and constant error
occurence rate are all known, formulas for such quantities as distribution of
time to completely debugged software, distribution of time to a specified
number of remaining errors, and expected number of errors detected by time t
can ve derived.

Work is currently in progress in extending the Imperfect Debugging Model to
incorporate error correction time, estimation of model parameters and develop-
ment of a Bayesian model; developing bivariate software re’iability models wher
system errors are classified as serious and non-serious; development of empiri-
cal models for software error data; develooment of sotrware reliabilitv demon-
stration plans for making accept/reject decisions for software’packages; and
investigating the effects of changes in prior distributions and/or model para-
meters on quantities of interest.
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2.1.2 PFPredictive Distributions

Let the random variables X and Y denote the error occurrence time
and the Phase I error correction time, respectively, with probability

density functions

fx) =% ™A xs0,150
d
- 1 vy,
g(rluy) = ™ e » ¥ >0, u>0.
Let the prior distributions for My and A be inverted gammas given
by
a, =(a,+1) -B./u
RS g, e s Uy
puy) Ta)) By ‘ g sy =0
g 1 a, ~(a,+1) -lel
p(}) = TTEZT "B, A ‘e ’ a,,8, > 0.

Finally, let x = (xl, aik vy xn) and y = (yl, vy yn) be the observed
values of n error occurrence times and n error correction times, re-

spectively.
Now we obtain expressions for the predictive distributions of Y

and X and the Bayesian estimates 9n+1 and ﬁn+1 which we will use to

obtain the cost function.

For given observations y, the likelihood function of Hy is

n
]

- Ly

Ly ly) = up" e i ’

and the posterior distribution of ul is
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n al+n
B, + Ly) Lip o
Pl (ul+n 1)

n
'{(81+1£ yi)/(ul)}
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Then, the predictive distribution of error correction time at

Phase I is
n + oy —(n+a1+l)
golp = —) (1+—L—)
Ly, +8 Ly, *8
S Al e

and the cumulative predictive distribution to some specified time t is

R ¢ - (nta,)
G(tly) = J gy|yde =1 - (1 + —?T'—_———"—)

0 ® iy, F B
oag- i i

We define the predictive Phase 1 error correction rate as

g(t|y)
r(t‘l) i ’
G(ely)
so that e
1 : -1
PR g lsemaity (g )
Iyt LY.+ B
T g3 & L
where

G(t) = 1 - G(t)

From the above results the Bayesian estimate of the (n+l)st error

correction time for given y is
n
Ly, +8
_ 1=1 i 1

n+l al +n-~1

Proceeding similarly, the Bayesian estimate of the time to (n+l)st error

<>

occurrence, for given x, is



2.1.3 Cost Function

Let cl(cz) be the cost per unit time of error correction in Phase I
(Phase II) and the costs be linear functions of time, If we consider
one cycle to be the time from the beginning of (n+l)st cperation to the

beginning of (n+2)nd operation, then the expected cost in one cycle is

T
E(C) = c'lf‘(-;(tlx)dt +c,y U ¢ (tly,
0

where T denotes the scheduled correction limit time in Phase I.

The expected length of one cycle is

. T
E(T) = x ,; + J G(t|pdt + wp C(T|y) ,
0

and hence the long run exp :te: cost per unit time is

2]

! o = C
(D) = Fef

™

or T
< ]§(t|x)dt + c, M2 E(Tll)
0

C(T) =
;‘n+1 + PE(tll)dt + uy E(le)
0

2.1.4 Optimum Policy

From the above expressions, we note that

c2 Ho
c(0) = r
o+l T W2

and

cy 9n+1

+y

C(») =
x

n+l n+l




where §n+1 is the Bayesian estimate of y for given data y. Also, note
that T = 0 means that the errors are corrected only at Phase II while
T = » means that they are corrected at Phase I.

To obtain an optimum T* which minimizes the long run average cost per
unit time, C(T), we need the following theorems and corollary. They are
} given here without proofs.
Theorem 2.1:

Assume c1<c2. Then there exists a finite and unique T* which satisfies

T—
r(T|y) {e, in+1 + (cy-cy) I G(t|y)de}
0

c1 xn+1

+ (cz-cl) E(Tlx) = =

" under the following condition

o (Kpgq * ¥2) =€) w2

r(0ly) >

X+l M2

———

va

Theorem 2.2:
If the above conditions are satisfied then there also exists a finite

and unique upper bound T(>T*) such that
¢ X 41

wole, x 0+ (c2-c1)u1}

r(Tly) =

This upper bound can be used to obtain an initial value for solving
the nonlinear equations in T%.

Corollary 2.3

If there exists an optimum T* then the associated cost function is given

by
cy=¢, 2 r(T*|y)

C(T*) o 1Tu2 r(T*ll)




2.1.5 Numerical Example

We use gimulated data in this example to illustrate the calculation

and nature of various quantities in the determination of T*.

Let :
¢, = 8000 c, = 9000
ay =0 Bl =0
a, = 0 82 =0
Hy = 0.7

The simulated data (xn,yn) are given in Table 2.1. Suppose n = 10 data
points are available. The Bayesian estimates of failure time and correction

~

time are x,. = 59.60 and Y11 - 0.78, respectively. Such values for various

11
n are given in Table 2.2 . For the case n = 10 we see that the optimum
correction limit time is T* = 0.90 hours and the corresponding minimum
cost rate is C(T*) = 99,44 dollars/hour.

Thus, for this set of data, we will schedule corrective action 1in
Phase I for 0.90 hours and if it cannot be completed in this time, the

software system will be referred to the system programmer for corrective

action.




Table 2.1

Simulated Values of x and Y,

x (Hrs.) (Hrs.) n x (Hrs.) yn(Hrs.)
61.34 1.90 11 53.44 1.03
27.84 1.08 12 2.87 0.95

154. 30 0.85 13 31.27 0.60
14.58 0.26 14 97.06 0.02
10.86 0.01 15 78.17 1.49
35.35 0.31 16 124.52 0.52

140.13 0.38 17 0.49 0.36
36.47 1.50 18 12.33 0.08

8.74 0.43 19 85.44 3.51
46.79 0.27 20 23.59 0.10



Table 2.2

Calculation for the Optimum Correction Time Policy

x .. (hr.)

yn+1

(hr.)

n n+1 T* (hr.) C(T*)
2 89.17 2.98 0 70.10
3 121.74 1.92 0 51.45
4 86.02 1.36 0 72.65
5 67.23 1.02 0 92.74
6 60.85 0.88 0.32 101.05
7 74.07 0.80 0.73 80.11
8 68.70 0.90 0.02 90.78
g 61.20 0.84 0.38 100.60
10 59.60 0.78 0.90 99.44
11 58.98 0.80 0.66 102.87
12 53.88 0.82 0.50 113.82
13 52.00 0.80 0.68 116.85
14 55.46 0.74 1.45 103.80
15 57.09 0.79 0.75 106.51
16 61.58 0.77 1.02 97.47
17 57.76 0.75 1.45 101.22
18 55.09 0.71 2.16 101.14
19 56.78 0.86 0 109.61
20 55.03 0.82 0.13 112.97
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2.2. MODEL DEVELOPMENT INCLUDING SAMPLING COST (MODEL 2)

In this section we develop the cost model for the gptimum correction
limit policy by incorporating sampling cost. It {8 ansumed that, in
addition to the assumptions of Section 2.1.1, the sampling cost is a
linear function of sample size,

Let ¢ be the sampling cost at each stage, and Cn(Tn) be the expected
cost per unit time until the completion of (n+l)st corrective action under
scheduling time Tn. If we decide to take another observation ((ntl)st),
then Cn+1(Tn+1) is the cost rate function until the completion of (n+2)nd

corrective action under scheduling time Tn+1'

2.2.1 Cost Function

Following a procedure similar to that of Sections 2.1,2 and 2.1.3,

the expected cost per unit time at the end of the (n+l)st corrective action is

E
n
nc + ¢ ] G(t|y)dt + c,up G(T_|y)
1 0 2 n
C(T) =
n' n p n ?k_ | |
I x, +x + I y, + JG(t|ydt + u, G(T y)
gk i n+l =1 i 0 n

If we decide to take the next, (n+l)st, observation, then the cost rate

function to the end of (n+2)nd corrective action is similarly obtained as
T

n+l
.(n+1)c+c1 f G(t|y)de + ¢, H2 G(T|y)
0
cn+1(Tn+1) B “ n o iy (4
151 X, + 2 xn+1+ 151”1 + yn+1 + oj G(tlx)dt+ ') G(T“...lll)

11
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2.

2.2 Optimum Policy

Our objective is to determine the optimum sample size n* and the

optimum correction limit Tn* such that

c(r*)‘c (T*, )

+1 " n+l

Given that n observations have been taken, the following steps summarize

the procedure of determining these quantities:

(T*

*
(1) Calculate Cn(Tn) and C n+1)

n+l

(T*

(11) 1f Cn(T:) £ C ), then stop taking observations and

n+l " n+l

employ n* and T: as the optimum policy.
* *
(111) I1f cn(Tn) > Cn+1(Tn)’ take (n+l)st observatdion, i.e. let

n = n+l and go to step (i).

The following theorems are useful in determining C (T*) and C (T* ).

n+l " ntl

These are given here without proofs.
Theorem 3.4

Suppose ¢ < <, and A 2 0. Then there exists a uni§ue and finite T;

satisfying T
n

r(Tnlz) (& + (e,¢)) oI G(t|ydtr+ (ey=c;) E(Tn|z) =B

where
n a n
A=c, {I x, +x + I vy.,} - nc
e Tl - T

i n+l

T e, L n
B-—Lcl{t x, + x + I yi}-nc]
i=1 i=1

Also, the associated cost rate function is given by

- *
€ =€y M2 r(Tn)

- *
1-u r(’l'n)

Cn(T:) -

12




Theorcqﬂi&ﬁ
1f the conditions of Theorem 2.4 hold, then there exists a finite and

& *
upper bound Tn (> Tn) such that

B
A+ (cyme))¥ 4y

r(T, |y =

Theorem 2.6

*
If both T: and T, exist, then the following relationship holds:

& *
cn(Tn) i Cn+1(Tn+l)

Q)
<=> r(T*) (:) r(T:+1)
<> " > 1"

n (<) nt+l

2.2.3 Numerical Example

In this example we use simulated data to illustrate the determination
*
of n and Tn. Simulated values of X and yn for various n are given in

Table 2.3. Let

¢ = 8000, c, = 9000, c¢ = 40
a = .8 Bl =1

a, = 0 82 =0

uz = 0,7

* * * *
Then the calculated X 41’ Yne1? Tn’ cn(Tn)’ Tn+1 and cn+1(Tn+1) are
computed from the above expressions and are given in Table 2.4, From this

* *
table we see that for n = 11, Cll(Tll) = 21,74 and C12(T12) = 23,63 so that

13




Table 2.3

Simulated Values of x and ’

n xn(hr) yn(hr) n xn(hr) yn(hr)
A - 32,25 1.69 10 3.72 0.15
2 34.77 0.12 11 50,85 0.07
3 63,92 0,23 12 64,89 0.12
4 21.03 0,41 13 0.76 0.29
5 39,42 0.20 14 87,45 1,33
6 9,97 0.37 15 64.12 0,77
7 3,69 0.22 16 30,98 1.37
8 2.42 1.75 17 127,05 1.39
9 10.71 3.00 18 85.54 0.21
Table 2.4
Calculations for the Optimum Policy
* * * *
A §n+1 9n+1 Tn n(Tn) Tn+1 Cn+1(Tn+1)
2 67.01 1.56 0 46.73 0 37.72
3 65.47 1.09 0 32.34 0 32.05
4 50.65 0.91 0.33 30.9 0.33 27.06
5 47.85 0.76 0.92 24.44 0.92 23.74
6 40,27 0.69 0.12 23.00 0.13 20.55
7 34.17 0.62 0.19 21.43 0.19 19,12
8 29,64 0,77 0.95 25,63 0.95 23,25
9 27.27 1.02 0 26.21 0 24,93
10 24,66 0.93 0 26.23 0 24,32
11 27.27 0.85 0.09 21.74 0.09 23,63

14




*

® * *
< = =
11) ch(TIZ)' Therefore, the optimum policy is n 11 and Tn 0.09.

(T

2.3 Concluding Remarks

In the previous sections we have given an overview of the key results
for obtaining correction limit policies for two models, For the first model
the sampling costs are assumed to be negligible while for the second, the
sampling cost is taken to be a linear function of sample size., The main
theorems have been given without proofs and the policy determination was
illustrated via two numerical examples.

A detailed technical report on this task is being completed for sub-

mission to RADC.

15




3. A SOFTWARE RELIABILITY MODEL WITH IMPERFECT DEBUGGING

The purpose of this study is to develop software reliability models
for the case when errors are not corrected with certainty. In other words,
we are interested in developing and studying software reliability models
for the case when the programmer sometimes fails to correct a detected error.

A description of the key results is given in the following subsections.

3.1 Assumptions

The following assumptions are made for developing the model.

(1) Errors in the software are independent of each other and have
a constant occurrence rate A.

(i1) The probability of 2 or more errors occurring at the same time
is negligible. Then, if there are n errors in the software at
present, the distribution of time to the next failure is

f(t) = n)\-e_")‘t
(11ii) The correction time in the model is assumed to be zero. This

assumption may not hold in some situations. We plan to develop

another model which will include error correction time.

3.2 Model Development

Let p be the probability of successfully correcting an error,
q be the probability that the error is not corrected, q = 1-p,
X(t) be a random variable denoting the sy~tem state,
N be the initial number of errors.
Let PN,N-I and PN,N represent the transition probabilities from state N to

states N-1 and N, respectively. Then the cumulative distribution function (cdf)

of the time to next error at state N is

16




P

In general, the cdf o

Process is:

where Fi(t) =] ~a
P
Pij=q
0
and 1
P
o =),

This can be represented as:

(P

ij

N-

The above expressions
with parameters N, p and A

of interest in the followin

~NAt
FN(t) 1l - e

N,N-1 P
Py,n = @

f one step transition for the underlying Markov

Qij(t) =P, Fi(t)’

it

3

£€ 3 = =%, LS4 SN
#f § =1
otherwise
if § =0

otherwise

© v = O
Y a8 o =
L O O N

1

L

constitute the basic model for the error process
For these expressions we obtain various quantities

g subsections.
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3.3 Distribution of Time to a Completely Debugged Software

Let

G1 O(t) = cdf of first passage time from i to O by time t,
’

Then, by conditioning on the next one step, we get the renewal equa-
tions which we solve by Laplace-Stieltjes transforms. We get the cdf and

pdf of first passage time as

~ipAt

N
Z c.(1 ~e )

G (t) =
N,0 P

and
N
~ipAt
e o6} = 1 €, g9k «IE
N,O §=1 i

Lo NS ek
where Cj = (i) (-1)

The cdf's of the first passage times for several values of p, N = 10,
and A = 0.02 are shown in Figure 3.1. As expected, the cdf for a larger p

dominates that for a smaller p.

3.4 Distribution of Time to a Specified Number of Remaining Errors

In many situations we are not interested in a completely debugged
program because of the cost involved, We may be willing to tolerate a
certain number of remaining errors, say ng, which will ensure some desired

reliability. The distribution of time to ny is then of interest.

18
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=

Using an approach similax to that of Section 3.3, we get the cdf

and pdf as follows.

U VI TN e

and

NE“O - (n ti)pAt
8 (t) = B (n, +j)pre
N,no j=1 j,no 0
where
- N! N ) G T
Bj,n0 no! j! (N—no—j)! (-1) 0 + j

Plots of pdf and cdf for n0=0,1,..,9,A = 0.02, N =10 andP = 0.9 are

given in Figures 3.2 and 3.3, respectively. These plots are self explanatory.

3.5 State Occupancy Probabilities

In this section we develop expressions for computing the estimated
i+ v of remaining errors after a specified time period.
. @k

PN’no(t) = P{X(t) = ny|X(0) = N}

Usiug the renewal theoretic approach and the relationships:between

PN = (t) and G

(t), we obtain the following results:
g N,n0
N~n
0 ~n0Apt ~(n,~k)pAt
P t) = } Ay {e - e 9 i for 0 < nj < N
HePg k=1 "0
and

p % = 6 NAt

N,N
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where

Ak v N!
*0 nn! k! (N—nn-k)!

Further, an estimator of the number of errors remaining at time t is:
Xer= ] agR (t)
n0§N

Plots of the probability distributions for n, = 0,1,2,...,10 whern N = 10,

0
p=0.9 and A = 0.02 are given in Figure 3.4.
Now suppose we want an estimate of the number of errors remaining at

time t = 100. We have

2o T
10 0.152 x 10~/
9 0.769 x 107°
8 0.175 x 107%
7 0.235 x 1073
6 0.208 x 1072
5 0.126 x 107t
4 0.530 x 107}
3 0.153
2 0.290
1 0.325
q 0.164

From these values we get
X(100) = nog;o noPN’no(IOO) = 1.7
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3.6 Expected Number of Errors Detected by Time t

Let N(t) be a random variable denotine the total number of errors
detected by time t, Further, let MN(t) be the expected number of errors

detected by time t when the initial number of errors is N, i,e.
My (t) = E[N(t)[X(0)=N]

Using Markov renewal theory and Laplace~Stieltjes transforms, we

obtain the following results:

= (k-1+j
L Tl

Plots of M (t) for N = 3,6,9,...30, A= .02, and p = 0.9 are given

in Figure 3.5 and are self explanatory.

3.7 Concluding Remarks

In the previous sections we described the key aspects of an imperfect
debugging model. Expressions for various quantitites of interest were de-
veloped and numerical solutions were given for selected values of unknown
parameters N, A and p.

A detailed technical report on this task will be submitted to RADC
in Spring 1977,

The model was developed on the assumption of zero correction time.
For the follow-up model, we will include the time for corrective action,

Also to be investigated is the problem of estimating the parameters from
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available data. In a Bayesian context, we plan to develop models when
parameters N, A and p have prior distributions.
Detailed technical reports on this task will be submitted to RADC as

work is completed,

27




4, CURRENT WORK AND PLANS FOR THE NEXT PERIOD

The work on two modelling tasks was described in Secticns 2 and 3.
In this section we present an outline of the work being pursued and planned

for completion in the next period.

Further Work on Software Reliability Modelling with Imperfect Debugging

The following aspects of this problem will be investigated:
(i) Development of a model to incorporate error correction time.
(ii) Estimation of parameters of the models being studied.
(iii) Development and study of a Bayesian imperfect debugging model
Expressions for various quantitites of interest will be developed

and numerically studied.

Bivariate Software Error Model

We plan to develop software reliability models when the errors in
the system can be classified as serious and non-serious. Various quantities

of interest, for example system availability, will be studied.

Software Error Data Analysis

Some preliminary work is being pursued on the deyelopment of
empirical models for software error data, We plan to continue this

activity.

28




Software reliability demonstration plans will be developed to
provide a tool for making accept/reject decisions for software packages.

Both classical and Bayesian plans will be investigated.

Sensitivity Studies

In this task we will investigate the effects of changes in prior
distributions and/or model parameters on quantities of interest. The study

will be mostly numerical in nature.
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BASE UNITS:
length
mass
time

electric current

thermodynamic temperature

amount of substance
luminous intensity

SUPPLEMENTARY UNITS:

plane angle
solid angle

DERIVED UNITS:
Acceleration

activity (of a radioactive source)

angular acceleration
angular velocity

area

density

electric capacitance
electrical conductance
electric field strength
electric inductance
electric potential difference
electric resistance
electromotive force
energy

entropy

force

frequency
illuminance
luminance

luminous flux
magnetic field strength
magnetic flux
magnetic flux density
magnetomotive force
power

pressure

quantity of electricity
quantity of heat
radiant intensity
specific heat

stress

thermal conductivity
velocity

viscosity, dynamic
viscosity, kinematic
voltage

volume

wavenumber

work

METRIC SYSTEM

Unit

metre
kilogram
second
ampere
kelvin
mole
candela

radian
steradian

metre per second squared
disintegration per second
radian per second squared
radian per second

square metre

kilogram per cubic metre
farad

siemens

volt per metre

henry

volt

ohm

volt

joule

joule per kelvin

newton

hertz

lux

candela per square metre
lumen

ampere per metre

weber

tesla

ampere

watt

pascal

coulomt

joule

watt per steradian

joule per kilogram-kelvin
pascal

watt per metre-kelvin
metre per second
pascal-second

square metre per second
volt

cubic metre

reciprocal metre

joule

__Multiplication Factors

1 000 000 000 000 =
1 000 000 000 =

1 000 000 =

1000 =

100 =

10 =

01=

0.01 =

0.001 =

0.000 001
0.000 000 001
0.000 000 000 001

1012
10°
10*
10°
10?
10!
10~
19-?
10°°
10-¢
10-°
10~

0.000 000 000 000 001
0.000 000 000 NOO H00 001

* To be avoided where possible.

4 uon

10-'¢
10-'"

2

SI Symbol

m

kg

s

A

K

mol

cd

rad

sr

¥

€

-

\"

A"

J

Hz

Ix

Im

wb

)

A

w

Pa

C

)

Pa
Prefix
tora
Rige
m
kilo
hecto*
deks*
deci*
centi®
milli
micro
nano
ico
emto
afto

m/s
(disintegration)/s
rad/s
rad/s
m
kg/m
A-slV
AN
Vim
V-s/A
WIA
VIA
WA
N-m
K
kg-m/s
(cycleys
Im/m
cd/m
cd-sr
A/m
Vs
Wb/m
Jis
N/m
As
N-m
Wisr
Jkg-K
N/m
Wim-K
m/s
Pas
m's
WIA
m
(wave)m
N-m

SI Symbol

T
G
M

s~osE3faasx
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of
Rome Avwr Development Center

RADC plans and conducts research, exploratory and advanced
development programs in command, control, and communications
(c3) activities, and in the ¢’ areas of information sciences ,
and intelligence. The principal technical mission areas 0,
are communications, electromagnetic guidance and control, q
surveillance of ground and aerospace objects, intelligence )
data collection and handling, information system technology,
ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility. 3
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